Diffusion and Osmosis Lab

AP LAB 4

Part 1: Surface Area and Cell Size

- Which do you think has a greater influence on the rate of diffusion in a cell – surface area or volume?
- You will calculate surface are-to-volume ratios and determine the depth and rate of diffusion of acid through an indicator agar.

NOTE:

The agar you are using is not made with phenolphthalein; it is made with Bromothymol Blue (BTB).

BTB is BLUE in basic environments and turns YELLOW in acid.

► The acid you will use is vinegar.

Part 1: "Diffusion Cubes"

Only use enough Vinegar (Acid) to submerge/cover your cubes...don't be wasteful.

► Wear gloves!!!! Agar is growing mold ⊗

Part 2: Dialysis Tubing Models

1. Read through the lab sheet silently.

2. Then glue it into your lab notebook.

3. Look up when you are ready.

Part 2: Dialysis Tubing Models

Your group will draw 4 solution combinations.

- You choose which solution to put inside bag vs. outside.
- ► Leave some space at the top for water diffusion.
- ► Weigh it <u>before</u> you submerge into solution.
- Follow the posted directions for how to use the electronic balances.

How to use an electronic balance

- 1. Make sure it is ON and nothing on the scale.
- 2. Place EMPTY petri dish on scale.
- 3. Once the numbers settle, hit "ZERO" or "TARE."
 - 1. This will subtract the weight of the empty weigh dish.
- 4. Place object to be massed (filled dialysis tube).
- 5. Record weight in grams.
- 6. Leave the petri dish for the next person.

Data Collection – Individual Group Data

Cell condition	Initial Mass (g)	Final Mass (g)	Prediction: Gain or Lose Mass?	Actual % change in Mass
Sucrose In / Dextrose Out				

Record % change in mass to 10ths place. Ex: -4.2 or +0.6

Class Data Table

Record % change in mass to 10ths place. Ex: -4.2 or +0.6

Cell Condition	% change in Mass
1. Water In / Sucrose Out	
2. Sucrose In / Water Out	
3. Water In / Dextrose Out	
4. Dextrose In / Water Out	
5. Water In / Albumin Out	
6. Albumin In / Water Out	
7. Water In / Salt Out	
8. Salt In / Water Out	
9. Sucrose In / Dextrose Out	
10. Dextrose In / Sucrose Out	
11. Sucrose In / Albumin Out	
12. Albumin In / Sucrose Out	
13. Sucrose In / Salt Out	
14. Salt In / Sucrose Out	
15. Dextrose In / Albumin Out	
16. Albumin In / Dextrose Out	
17. Dextrose In / Salt Out	
18. Salt In / Dextrose Out	
19. Albumin In / Salt Out	
20. Salt in / Albumin Out	

Conclusions?

- Use -iCRT to calculate the osmotic potential of each solution. This will help you in Analysis question 2.
- Dextrose:
- Sucrose:
- Salt:
- Egg White (ovalbumin): (relative to others)

Part 3: Using a Vegetable (sweet potato) to determine Water Potential

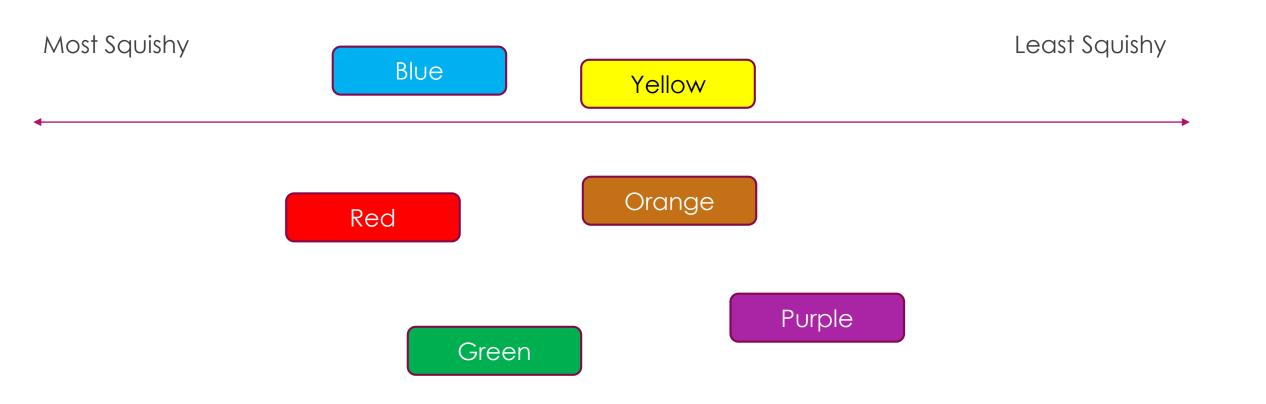
Design your own procedure/experiment to test

- 6 diff. colored solutions = 6 diff. molarities of sucrose (0.0M, 0.2M, 0.4M, 0.6M, 0.8M, 1.0M)
- Use potatoes to figure it out by seeing how much osmosis and diffusion occurs...leave over night
- ► Use ~equal sized potato pieces for each solution sample
- Measure the initial, final and % change in mass
- Perform the "squishiness" test

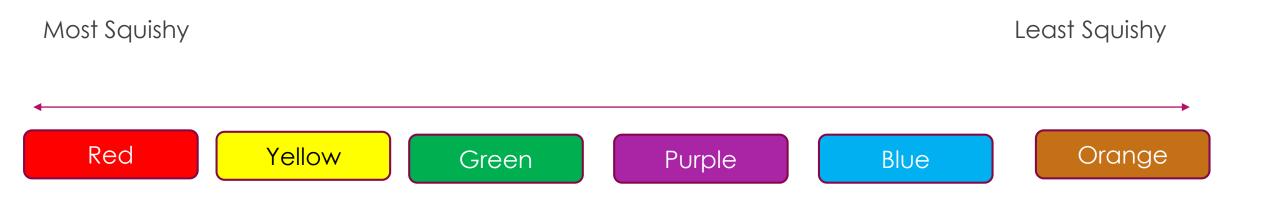
% Change in Mass – Individual Group Data

Final – Initial / Initial x 100 =

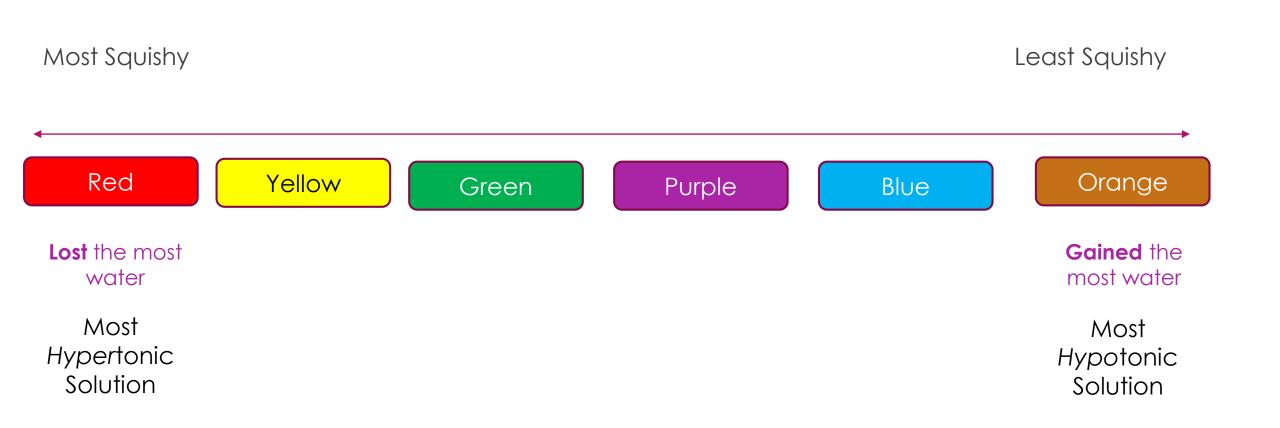
Solution Color	Initial Mass (g)	Final Mass (g)	% Change in Mass	Molarity
Red				
Orange				
Yellow				
Green				
Blue				
Purple				


% Change in Mass – 1st block Class Data

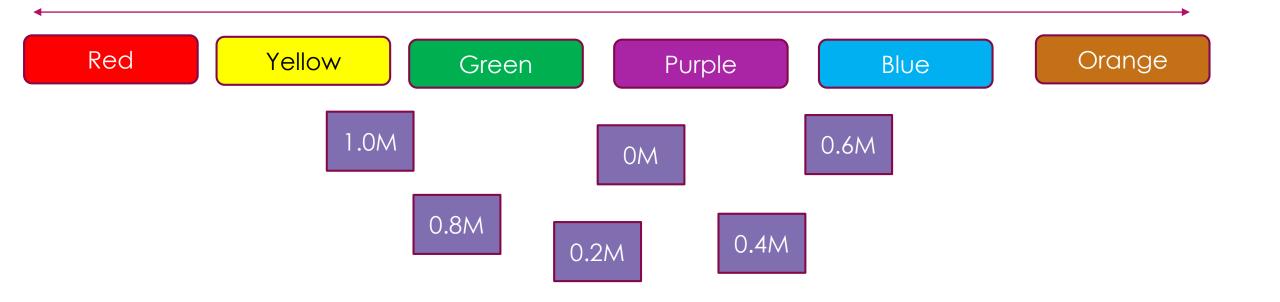
Solution Color	AVERAGE % Change in Mass	Molarity	
Red	-31.7		Hint: Look at your Squishiness Scale.
Orange	15.1		Sort them from most squishy to
Yellow	-29.9		least Then, sort data from graatest %
Green	-27.9		from greatest % mass lost to least % mass lost
Blue	4.3		
Purple	-16.7		


% Change in Mass – Class Data 4th block

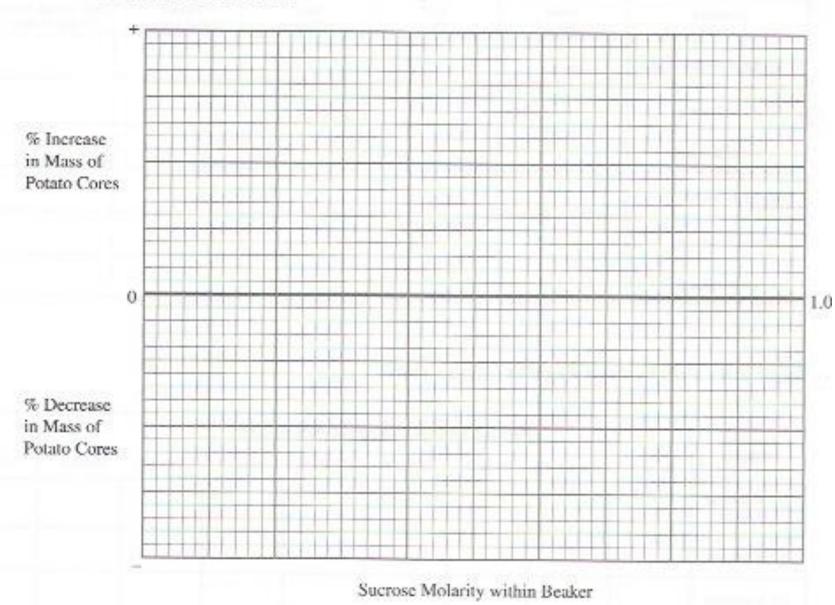
Solution Color	AVERAGE % Change in Mass	Molarity	
Red	-28.2		Hint: Look at your Squishiness Scale.
Orange	17.7		Sort them from most squishy to least
Yellow	-22.6		Then, sort data from greatest %
Green	-18.2		mass lost to least % mass lost
Blue	8.8		
Purple	-9.2		


Squishiness Scale – DRAW UNDER DATA TABLE sort them out!

Squishiness Scale – DRAW UNDER DATA TABLE!


Use the Squishiness Scale to predict Molarity

Use the Squishiness Scale to predict Molarity


Most Squishy

Least Squishy

% Change in Mass – Did you Get it?

Solution Color	AVERAGE % Change in Mass	Molarity
Red	-31.7	1.0 M
Orange	15.1	0.0 M
Yellow	-29.9	0.8 M
Green	-27.9	0.6 M
Blue	4.3	0.2 M
Purple	-16.7	0.4 M

Graph 1.2: Percent Change in Mass of Potato Cores at Different Molarities of Sucrose

- 1. Plot all data points.
- 2. Draw line of best fit
- 3. X-intercept = molar concentration of potato cell
- 4. Use water potential equation (Y = -iCRT) to calculate Y of potato cell

	r : × √ f _x						
А	В	С	D	E	F	G	Н
	Group	Red	Blue	Green	Yellow	Orange	Purple