Ch. 7 – Membrane Structure and Function

5. TRANSMEMBRANE (integral) PROTEIN structure	N-terminus α helix
	C-terminus CYTOPLASMIC SIDE
	 Winin membrane amino acids anchors protein into membrane On outer surfaces of membrane in fluid amino acids
	 extend into extracellular fluid & into cytosol Examples:
6. Many functions of membrane proteins	1. activity 2. activity 3. Cell surface (signal transduction) 4. Cell surface marker (cell recognition) 5. Cell 6. Attachment to the
7. Membrane CARBOHYDRATES	 Play a key role in
8. Movement across the cell membrane	Selective Permeability: (polar or nonpolar) cross easily (hydrocarbons, hydrophobic molecules, CO ₂ , O ₂) Hydrophobic core prevents passage of,
9. PASSIVE TRANSPORT	 (ATP) needed! Diffusion (high → low concentration) Eg. hydrocarbons,
10. SIMPLE DIFFUSION	 movement from → concentration transport needed
11.FACILITATED DIFFUSION	 Diffusion through transport

14. Types of ENDOCYTOSIS	PHAGOCYTOSIS	PINOCYTOSIS	CELL MEDIATED ENDOCYTOSIS
	Cellular	Cellular	Ligands (proteins) bind to on cell surface
	EXTRACELLULAR FLUID Solutes Pseudopodium "Food" or other particle Food vacuole CYTOPLASM	Plasma membrane	Coated pit Coated vesicle

SUMMARY:

Ch. 7 Cont'd. – The Special Case of Water

 Hypertonic Scenario - a cell in <u>salt water</u> concentration of water around cell Problem: example:
 Solution:
 plant cells only plasmolysis = (can recover)
 Isotonic Scenario - animal cell immersed in
 no movement of water flows across membrane equally, in directions cell involume of cell is stable example:

Do you understand Osmosis...

Cell (compared to beaker) \rightarrow hypertonic or hypotonic Beaker (compared to cell) \rightarrow hypertonic or hypotonic AP Bi Which way does the water flow? \rightarrow in or out of cell

<u>Water potential (ψ)</u> : H ₂ O m	ψ potential				
Water potential equation:	$\Psi = \Psi_{S} + \Psi_{P}$				
• Water potential (ψ) =					
• Solute potential (ψ_S) =	_ (osmotic potential)				
 Pressure potential (ψ_P) =					
Pure water: $\psi_P = 0$ MPc	a				
Plant cells: $\psi_P = 1 \text{ MPa}$					

Calculating Solute Potential (ψ_s)

 $\psi_{s} = -iCRT$

- i = ionization constant (# particles made in water)
- C = molar concentration
- R = pressure constant (0.0831 liter bars/mole-K)
- $T = temperature in K (273 + {}^{\circ}C)$
- The addition of solute to water ______ the solute potential (more negative) and therefore ______ the water potential.

Where Will the Water Move?

From an area of:

- 1. Which chamber has a lower water potential?
- 2. Which chamber has a lower solute potential?
- 3. In which direction will osmosis occur?
- 4. If one chamber has a Ψ of -2000 kPa, and the other -1000 kPa, which is the chamber that has the higher Ψ ?

AP Biology

- 1. Calculate the solute potential of a 0.1M NaCl solution at 25°C.
- 2. If the concentration of NaCl inside the plant cell is 0.15M, which way will the water diffuse if the cell is placed in the 0.1M NaCl solution?

