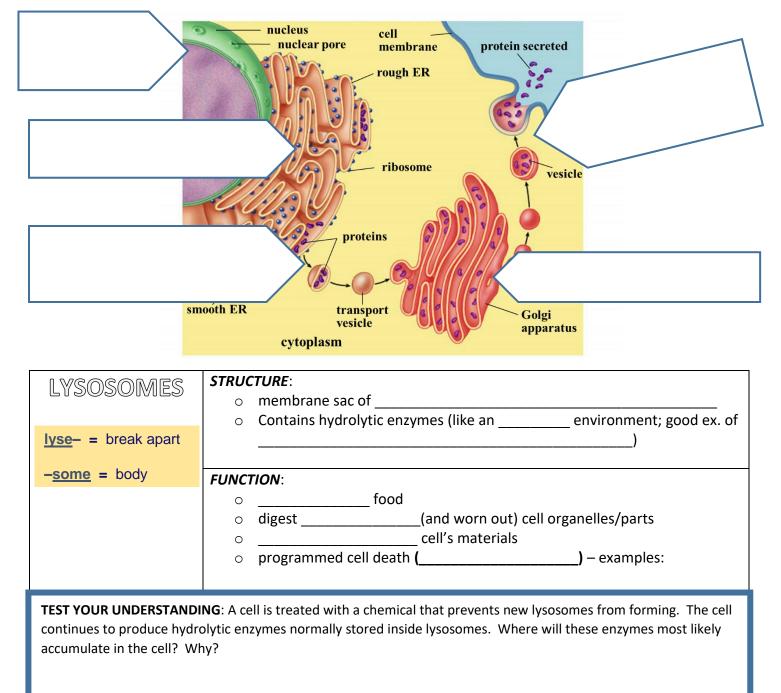
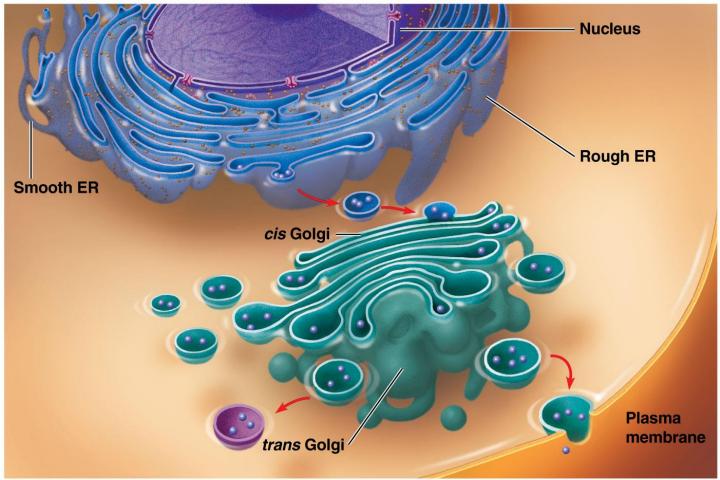
Ch. 6: A Tour of the Cell


1. Compare the 2 Types	PROKARYOTES	BOTH	EUKARYOTES	
of Cells	Domain:		Domain:	
	 Relative Size & Complexity: 		 Relative Size & Complexity: 	
	• No		• Has	
	DNA in		• Has	
	 No Examples: 		Examples:	
What are	1. Specialized structures			
ORGANELLES?	a			
Why are they IMPORTANT?	 2. <u>Containers</u> a cell into b. create different i. separate pH, or concentration of materials 			
	 <u>Membranes as sites for che</u> a. unique b. embedded i. chloroplasts 	mical reactions & reactions & reactions	of lipids & proteins ction centers	
Why are cells so small?	 to maintain a Large S.A. allows 		to ratio	
5111d11!	environment			
3. What is an example of LARGE SURFACE AREA in animals ?	•:	utrients finger-like projections projections on each c		
4. What is an example of LARGE SURFACE AREA in plants ?	surface area for absorbing		epidermal cells; increase erals	
5. What JOBS do cells have?	1.			
	2.			
	3.			

CELL ORGNAELLES, THEIR FUNCTIONS, & IMPORTANCE

NUCLEUS	STRUCTURE: • Surrounded by double memb () : control what enters/leaves f DNA + proteins; makes up ere ribosomal subunits are made point chromosome chromosome
RIBOSOMES	STRUCTURE: • Composed of	
ENDOPLASMIC RETICULUM Smooth ER Rough ER Iumen Cisternae Ribosomes Transport vesicle	Network of	and SMOOTH ER STRUCTURE: no ribosomes on surface FUNCTIONS: 1. synthesize 2. metabolize (glycogen \rightarrow glucose) 3 drugs & poisons (liver), Ca ²⁺

GOLGI APPARATUS (GOLGI BODY)	STRUCTURE: Series of flattened Cis face: Trans face: FUNCTION:	vesicles vesicles /finish, proteins (in vesicles)	(cisternae) ,, and
4. Describe the "order" of how proteins are made.	The protein assembly line organelles are included?	e is part of the ENDOME	MBRANE SYSTEM. Which


Draw a line to show the process/order of how proteins are made all the way to excretion. Be able to explain what is *happening* at each cellular site.

VACUOLES &	STRUCTURE:
VESICLES	
	FUNCTION:
	Turneet
	Types:
	Difference in plant vs animal cells?
Lysosomes	Both Vesicles/ Vacuoles
	ER Golgi

Summary: Endomembrane Transport of Proteins

- Know the <u>sequence</u> of organelles involved.
- Know what <u>happens</u> at each step along the way.

© 2011 Pearson Education, Inc.

1		
т	•	

2.

3.

4.

5.

MITOCHONDRIA	STRUCTURE:
	• 2 membranes
	 smooth membrane
	 highly inner membrane =
	internal fluid-filled space=
	 internal fluid-filled space=
	Why is a double membrane important??
	Cristae
	FUNCTION:
	• generate from
	breakdown of, fats & other fuels in the presence of
	break down larger molecules into smaller to generate energy =
	generate energy in presence of O ₂ = respiration
CHLOROPLAST	 Found only in cells class of plant structures = amyloplasts - store in roots & tubers chromoplasts - store for fruits & flowers chloroplasts store & function in photosynthesis in leaves
	STRUCTURE:
	 2 membranes = internal fluid-filled space containing: DNA, ribosomes & enzymes = membranous sacs where is made = stacks of thylakoids
	Why internal sac membranes?
	Outer membrane
	Inner membrane
	Granum (stack of thylakoids)

	FUNCTION
	 generate ATP & synthesize transform energy into energy produce sugars from &
5. ENDOSYMBIONT THEORY	What does the theory state?
	Why are chloroplasts and mitochondria evidence of this?
	What were the advantages to being an endosymbiont?
	Engulfing of oxygen- using nonphotosynthetic prokaryote, which becomes a mitochondrion Mitochondrion Mitochondrion Mitochondrion Mitochondrion Mitochondrion Mitochondrion Mitochondrion Mitochondrion Mitochondrion Nonphotosynthetic one cell Nonphotosynthetic one cell Mitochondrion Photosynthetic eukaryote
PEROXISOMES	FUNCTIONS: A. break down (and send to mitochondria for fuel) B. detox a. Involves production of (H ₂ O ₂)
	Chloroplast Peroxisome Mitochondrion

CYTOSKELETON	STRUCTURE: network of		fi	bers
	FUNCTION: 1 activities	2	3.	. regulate biochemical
	Microtubules	Microfil	aments	Intermediate Filaments
	Protein = fibors	Protein =		Intermediate size
	 fibers Shape/cell Track for movement Formsfor mitosis/meiosis Component of Column of tubulin dimers Column of tubulin dimers 	 fibers Support of smaller set Eg. ameb movemen cytoplasm streaming 	cale oid nt, nic g, cell	fixtures Maintain shape of cell Fix position of organelles Keratin proteins Fibrous subunit (keratins coiled together) 8–12 nm
CENTROSOMES	Centrosomes			Centrioles
vs. CENTRIOLES	 region from which grow Also called <i>microtubule</i> center 	e organizing	cell <i>FUNCTION:</i> 	: one in each help coordinate
	Centrosome {	Centrio		crotubule 0.25 μm

JUNCTIONS in PLANT CELLS	 protect plant, maintain Composed of 	-	cells to al	between low passage of molecules
	Cell Wall		P	asmodesmata
INTERCELLULAR JUNCTIONS in ANIMAL cells	Tight junctions 2 cells are to form seal	Desmos " fasten cells ir strong sheets	" that nto	Gap Junctions
EXTRACELLULAR MATRIX (ECM)	STRUCTURE: • • • • Composed of	tissues	and transm	nits external
CILIA & FLAGELLA	 Have "9+2 pattern" of r 			hrough water ocomotion or move fluids

TEST YOUR UNDERSTANDING:

One of the key innovations in the evolution of eukaryotes from a prokaryotic ancestor is the endomembrane system. What eukaryotic organelles or features might have evolved as a part of, or as an elaboration of, the endomembrane system?

- A) plasma membrane
- B) chloroplasts
- C) mitochondria
- D) nuclear envelope
- E) none of these

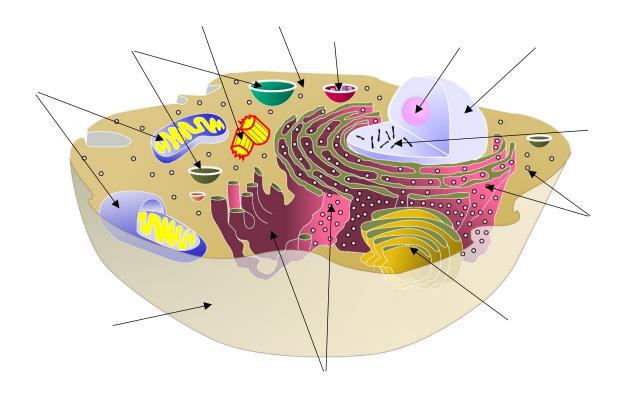
Why isn't the mitochondrion classified as part of the endomembrane system?

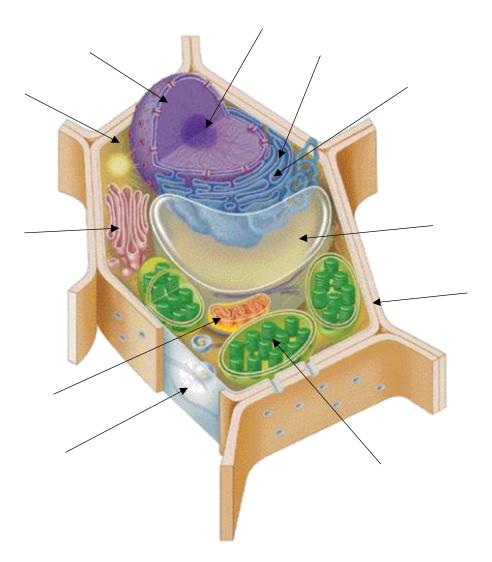
- A) It is a static structure.
- B) Its structure is not derived from the ER or Golgi.
- C) It has too many vesicles.
- D) It is not involved in protein synthesis.
- E) It is not attached to the outer nuclear envelope.

Centrioles, cilia, flagella, and basal bodies have remarkably similar structural elements and arrangements. Which of the following hypotheses is most plausible in light of such structural similarities?

A) Cilia and flagella arise from the centrioles.

B) Loss of basal bodies should lead to loss of all cilia, flagella, and centrioles.


C) Motor proteins such as dynein must have evolved before any of these four kinds of structure.


D) Cilia and flagella coevolved in the same ancestral eukaryotic organism.

E) Natural selection for cell motility repeatedly selected for microtubular arrays in circular patterns in the evolution of each of these structures.

Summary: Plant Cells ONLY vs Animal Cells ONLY – look back at your notes and fill in the chart.

Plant Cells ONLY	Animal Cells ONLY

ORGANELLE – FUNCTION MATCHING

Nucleus	A. controls movement of materials in & out
Ribosome	B. make ATP in cellular respiration
Rough ER	C. jelly-like material holding organelles in place
Golgi Apparatus	D. Synthesize lipids, detox
Lysosomes	E. finishes, packages & ships proteins
Vacuole	F. storage
Mitochondria	G. control cell, protects DNA
Chloroplast	H. processes proteins and sends in vesicles to Golgi, makes membranes
Peroxisome	I. Support & protection
Cytoskeleton	J. make proteins
Centrioles	K. transport inside cells
Nucleolus	L. Role in cell division in animal cells
Cell wall	M. make ribosomes
Cell Membrane	N. break down fatty acids, detox alcohol, produces H ₂ O ₂
Cytoplasm	O. food digestion, garbage disposal, recycling. & apoptosis
Vesicle	P. support, motility, regulate biochemical activities
Smooth ER	Q. make ATP & sugars in photosynthesis
	Ribosome Rough ER Golgi Apparatus Lysosomes Vacuole Mitochondria Chloroplast Peroxisome Cytoskeleton Centrioles Nucleolus Cell wall Cytoplasm Vacleolus