ANTICIPATION GUIDE for CELLULAR RESPIRATION

Answer each question as best as you know in "Before" column. At the end of class you will go back and answer all of the questions in the "After" column.

Questions	"Before" Lesson	"After" Lesson
 To which class of biomolecules does ATP belong? 		
 What kinds of cells/organisms can do aerobic cellular respiration? 		
 What is the equation for aerobic cellular respiration? 		
 Where does glycolysis (the first step in cellular respiration) occur in a cell? 		
 In which cellular organelle does aerobic cellular respiration occur? 		
 What are the 2 main types of fermentation? 		

Video #1: Amoeba Sisters- Cellular Respiration & the Mighty Mitochondria:

(2) KREBS CYCLE (a.k.a. "Citric Acid Cycle")

(3) ETC (ELECTRON TRANSPORT CHAIN)

______& _____ are electron carriers that create a _______ (H+) gradient. This chain utilizes many proteins with electron carriers in series. Eventually a surplus of H+ builds up on one side of the membrane and flows down their concentration gradient through the enzyme _______. This enzyme pump generates ______ by phosphorylating ______. The final electron acceptor in the ETC is _______. It combines with _____ protons to create ______. Draw this last step in on the picture above.

Video #2: Amoeba Sisters – Fermentation:

- 1) Anaerobic respiration does not require ______. It is also called ______
- 2) What kinds of organisms perform anaerobic respiration?
- 3) What are NADH (and FADH2)? What do they do?
- 4) Alcoholic Fermentation:
- 5) Lactic Acid Fermentation:

CHECK FOR UNDERSTANDING EXIT QUESTIONS:

Name: _____

<u>Directions</u>: You may use your notes page from today to answer the questions. You may NOT discuss answers with your peers.

- List the 3 steps of Cellular Respiration in sequence. (3)
 1.
 - 2. _____
 - 3. _____
- 2) What is the **net** amount **ATP** produced from **glycolysis**? (1)
- 3) Is glycolysis aerobic or anaerobic, and what does this mean? (2)

- 4) Why is **oxygen important** in the **ETC** (electron transport chain)? (1)
- 5) Which step in cellular respiration produces the **most ATP**? (1)

- 6) Which step(s) of the cellular respiration pathway do **alcoholic fermentation and lactic acid fermentation** have in common? *(1)*
- 7) Give an example/scenario of lactic acid fermentation. (1)

CHECK FOR UNDERSTANDING EXIT QUESTIONS:

Name: _____

<u>Directions</u>: You may use your notes page from today to answer the questions. You may NOT discuss answers with your peers.

- List the 3 steps of Cellular Respiration in sequence. (3)
 1.
 - 2. _____
 - 3. _____
- 2) What is the **net** amount **ATP** produced from **glycolysis**? (1)
- 3) Is glycolysis aerobic or anaerobic, and what does this mean? (2)

- 4) Why is **oxygen important** in the **ETC** (electron transport chain)? (1)
- 5) Which step in cellular respiration produces the **most ATP**? (1)

- 6) Which step(s) of the cellular respiration pathway do **alcoholic fermentation and lactic acid fermentation** have in common? *(1)*
- 7) Give an example/scenario of lactic acid fermentation. (1)